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Real networks often consist of local units interacting with each other by means of heterogeneous connec-
tions. In many cases, furthermore, such networks feature degree mixing properties, i.e., the tendency of nodes
with high degree �with low degree� to connect with connectivity peers �with highly connected nodes�. Such
degree-degree correlations may have an important influence in the spreading of information or infectious
agents on a network. We explore the role played by these correlations for the synchronization of networks of
coupled dynamical systems. Using a stochastic optimization technique, we find that the value of degree mixing
providing optimal conditions for synchronization depends on the weighted coupling scheme. We also show that
a minimization of the assortative coefficient may induce a strong destabilization of the synchronous state. We
illustrate our findings for weighted networks with scale free and random topologies.

DOI: 10.1103/PhysRevE.74.066107 PACS number�s�: 89.75.Hc, 05.45.Xt

In recent years, complex networks have provided a chal-
lenging framework for the study of collective �synchronized�
behaviors, based on the interplay between complexity in the
overall topology and local dynamical properties of the
coupled units �1�. In particular, complex wirings have been
proven to enhance �with respect to regular topologies� the
ability of a network to synchronize �2,3�. Initially, this en-
hancement was attributed to the decrease in the average net-
work distance between nodes. In fact, synchronization is af-
fected by many topological features such as the degree
distribution, characteristic path length, betweenness central-
ity, and weight distributions among others �4–6�.

In many real-world networks, vertices also exhibit a ten-
dency to be connected to other vertices with similar �or dis-
similar� degree, i.e., nodes with many connections tend to
connect to nodes with many �or few� connections �7�. Social
networks for instance, tend to exhibit positive degree-degree
correlations—often called assortative mixing—whereas bio-
logical and technological networks display a disassortative
mixing. It has been found that the degree mixing strongly
determines the extent to which information or an infectious
disease is contained within a core group, or spread to the rest
of the population �7,8�.

In this paper we explore the role of degree-degree corre-
lations for the synchronization of weighted complex net-
works. Namely, �i� we assess the network propensity for syn-
chronization as a function of its assortative degree and �ii�
we give evidence that the degree mixing providing optimal
conditions for synchronization depends on the weighted cou-
pling scheme. We also show that, �iii� minimizing the assor-
tative behavior of a network may induce a strong destabili-
zation of the synchronous state.

We start by considering a generic network of N coupled
maps, whose dynamical evolution is ruled by

xt+1
i = f�xt

i� − ��
j=1

N

GijH�xt
j�, i = 1, . . . ,N , �1�

where xt+1
j = f�xt

i� governs the local dynamics of each map,
the function H�x� defines the nature of coupling between

nodes, � is the coupling strength, and G is the coupling
matrix accounting for the network’s topology. G is assumed
to be zero row sum �which ensures the existence of an in-
variant synchronization manifold wherein the coupling term
in Eq. �1� exactly vanishes�, and to have a real spectrum of
eigenvalues.

If diagonal elements Gii=−� j�iGij �0, G has a spectrum
of real and non-negative eigenvalues, with the smallest ei-
genvalue �1=0 because � jGij =0∀ i, and �2�0 if the net-
work is connected. The eigenvalues can be then ordered as
0=�1��2� ¯ ��N �9�. According to the criteria of the
master stability function �10�, the propensity of a network to
synchronize can be inspected by the eigenratio �N /�2 of the
coupling matrix G �originally assumed as diagonalizable but
not necessarily symmetric�: the smaller the eigenratio is, the
higher the chance of having a stable synchronization for
some � �2,10�. Recently, Ref. �11� has extended the above
formalism also to the case of nondiagonalizable coupling
matrices.

Traditionally, the oscillators are coupled with uniform and
undirected coupling strengths �unweighted links�. There are,
however, paradigmatic cases where a weighting or an asym-
metry in the connections has relevant consequences in deter-
mining the network’s dynamics. In ecological systems, for
instance, the heterogeneity of weights and in prey-predator
interactions plays a crucial role in determining the food web
stability �12�. Similarly, the natural differences of neurons
and their synaptic weights connections play an important
role in the capabilities of transmission and information pro-
cessing in neural networks �13�.

Recent studies have revealed the strong influence of
weighted and asymmetric coupling configurations on the
emergence of coherent global behavior �5,6�. Motivated by
empirical observations of metabolic and airport networks
�14,15�, which have revealed that the average link weight
between nodes i and j scales with powers of the product of
the corresponding degrees ��Wij���kikj��, with � depending
on the observed network�, we consider here a weighted cou-
pling term given by �16�
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�
j=1

N

GijH�x j� =
1

Ki
�

j�Ni

WijH�x j� , �2�

where Wij = �kikj��, and Ni is the set of neighbors to the ith
node. � is a real tunable parameter that controls the hetero-
geneity of the input strength of nodes. It has to be noticed
that an optimal condition �=−1 for synchronization was re-
cently found �16� for Ki=K=1 on uncorrelated SF networks.

Under many circumstances it is convenient to normalize
the diagonal elements of the coupling matrix to Gii=1. Such
normalization prevents the coupling term from being arbi-
trarily large �or arbitrarily small� for all possible network
topologies, thus avoiding the local influence of the environ-
ment on the dynamics to scale with the number of connec-
tions. Such a normalized coupling can be obtained by setting
Ki=� j�Ni

Wij.
Although the coupling matrix G becomes asymmetric, it

can be written as a product G=DL, where L is a zero row-
sum matrix with off-diagonal entries Lij =−Wij, and D
=diag	 1

� jW1j , . . . , 1
� jWNj


. The eigenvalue spectrum of G is the
same as that obtained from the matrix W=D1/2LD1/2, and
therefore is real with nonnegative values, and all the argu-
ments of the master stability function approach apply. In this
case, the eigenvalues also verify �i�2∀ i �9�, which war-
rants that the largest eigenvalue �N will never diverge, inde-
pendently of the network size N and for all possible network
topologies.

A first attempt at assessing the role of assortative mixing
on synchronization was recently provided in Ref. �17� for
unweighted and weighted coupling configurations �with a
weighting scheme based on powers of the node degrees as in
Ref. �5��. In both cases, networks were found to synchronize
better when their topology displayed a disassortative mixing,
i.e., when nodes with low degree were more likely to be
connected to nodes with a high degree. In this paper we
complement the study of Ref. �17�, and show that the pro-
pensity for synchronization in correlated networks depends
on the weighting procedure. While we will recover the es-
sential features of Ref. �17�, we will show that for a more
general weighting scheme, tuning the assortative mixing of a
network towards large negative values may induce a strong
destabilization of the synchronous state.

Following Refs. �7� the assortative coefficient of a net-
work can be estimated by rnet= �� j,kjk�ejk−qjqk�� /�q

2, where
ejk is the fraction of edges that connect vertices of degrees j
and k, the distribution qk=� jejk with standard deviation �q.
For practical purposes of evaluating r on an observed net-
work, this expression can be written in the form �7�

rnet =

M−1�
i

M

jiki − �M−1�
i

M
1

2
�ji + ki��2

M−1�
i

M
1

2
�ji + ki� − �M−1�

i

M
1

2
�ji + ki��2 , �3�

where ji and ki are the degrees of the nodes at the ends of the
ith edge and M is the total number of edges.

To assess the effect of the assortative mixing on the syn-
chronization of a network, we consider here a randomized
ensemble of networks in which the degree distribution p�k�
is kept unchanged, while the assortative coefficient is tuned
by using a simulated annealing �SA� algorithm �18�. This
stochastic optimization technique allows performing an ex-
haustive search and finding a low-cost configuration without
getting trapped in high-cost local minima. To create such an
ensemble of networks we successively randomize a network
with the algorithm described in Ref. �19�. According to this
algorithm, at some finite “temperature” T, we randomly
select pair of edges �that do not share a common node�
and the attaching nodes are exchanged with probability
min	1,exp�−�E /T�
; where �E is the variation achieved at
each cooling step in the cost function E, defined as the dis-
tance between the expected assortative coefficient r and that
quantified from the optimized network rnet: E= 
rnet−r
. The
obtained randomized networks have thus an assortative co-
efficient very close to the expected value r �E�10−4 at the
end of the cooling iterations�, and precisely the same degree
distribution p�k� as the original network.

Although many cooling schemes have been discussed in
the literature, in this work the temperature is simply multi-
plied by 	 at each cooling step. Cooling is done if either the
number of accepted exchanges of edges since the last cooling
exceeds Nsucc, or the total number of configurations visited
during the current cooling step exceeds Ntot �18�. As the tem-
perature is decreased, the system configuration is annealed to
the minimum of the cost function. For all the examples of
our study, we have set 	=0.9, Nsucc=5N and Ntot=N /2,
where N is the size of the network.

By monitoring the ratio �N /�2 of the coupling matrix G,
we can now study the synchronizability of a class of net-
works with the same degree distributions but different assor-
tative coefficients r. The used class of scale-free networks is
obtained by a generalization of the preferential attachment
growing procedure introduced in Ref. �20�. Namely, starting
from m+1 all to all connected nodes, at each time step a new
node is added with m links. These m links point to old nodes
with probability pi=

ki+B

� j�kj+B� , where ki is the degree of the

node i, and B is a tunable real parameter, representing the
initial attractiveness of each node. This procedure allows a
selection of the 
 exponent of the power law scaling in the
degree distribution �21� �p�k��k−
�B,m�� with 
�B ,m�=3+ B

m
in the thermodynamic �N→�� limit. While the average de-
gree is by construction �k�=2m �thus independent on B�, the
heterogeneity of the degree distribution can be strongly
modified by B.

For comparison, we also apply our analysis to a class of
networks with a high homogeneous degree distribution, rep-
resented by random �RND� networks obtained via the rewir-
ing procedure proposed in Ref. �22�. Here, starting from a
ring lattice of N nodes connected with their k nearest neigh-
bors, we substitute all nearest neighbor connections with
links randomly pointing to other nodes in the network. For
all the studied networks, the heterogeneity of weights is con-
trolled by varying the parameter � in the coupling term,
whereas the r coefficient is tuned by applying the SA proce-
dure described above.
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Figure 1 shows the logarithm of �N /�2 as a function of
the parameter � for SF and RND networks with different
degrees of assortative mixing. The first observation is that,
the curves of �N /�2 for RND networks display a minimum at
��0, independently of the degree mixing. For disassortative
SF topologies, a minimum is also observed at ��0. In con-
trast, for assortative �r=0.3� SF networks, the value of �N /�2

decreases with ��0 with inflection points �computed
numerically� located at ��−0.5 and ��1 for B=0, and at
��1 for B=35. These results suggest that the differences
between homogeneous and heterogeneous degree distribu-
tions for inducing an optimal synchronized behavior depend
on the values of r. In all our results, N has been varied from
200 to 1000 without significant qualitative differences.

The effect of assortative mixing on synchronization is fur-
ther illustrated in Fig. 2: Fig. 2�a� reports the behavior of
ln��N /�2� vs r for the case �=0 �i.e., when the links are
weighted with the node degrees�, indicating that a small
negative degree mixing �−0.3�r�0.2� may provide better
topologies for inducing a synchronized behavior than assor-
tative wirings �thus fully recovering the results of Ref. �17��;
while curves of Fig. 2�b� indicate that for other weighted
coupling scheme �here �=3�, the effect of degree-degree cor-
relations strongly depends on the degree distribution of the
networks. It is important to emphasize that, even though the
coefficient r can take hypothetical values between �−1,1�,
the obtained limits were often unable to span the whole
range, basically due to the constraints imposed by the degree

distribution p�k� of the considered network. This explains the
different limits of r for the topologies considered.

Recent works suggest that negative degree-degree corre-
lations are an emerging property of networks when the pro-
pensity for inducing a synchronized behavior is optimized
�17�. To further investigate the effect on synchronization of
such disassortative topologies, we have tuned the value of
the coefficient r for SF and RND networks towards its mini-
mum value �theoretically r→−1� and computed the ratio
�N /�2 for different weighted coupling schemes �different
values of ��. For this purpose, we have used the SA scheme
described above, where the cost function was simply set as
the assortative coefficient estimated from the network
E=rnet. This randomization scheme allows reaching the
minimum value of the degree-degree correlation of a net-
work while its degree distribution remains unchanged.

Figure 3 reports the behavior of ln��N�n� /�2�n�� vs r�n� at
each cooling step n of the SA procedure described in the
paragraph above, for RND and SF networks and different
values of �. The crucial observation is that, as r reaches its
lowest value, the ratio �N /�2 considerably increases for all
values of �. This is a remarkable result, insofar as it indicates
that although a minimization of the ratio �N /�2 yields nega-
tive degree-degree correlations �17�, a further minimization
of the assortative coefficient induces a strong destabilization
of the synchronous state.

FIG. 1. �N /�2 �in logarithmic scale� vs the dimensionless parameter � for �a� disassortative networks �r=−0.3�, �b� topologies with
r=0, and �c� assortative wirings �r=0.3�. Solid and dashed lines correspond to the SF case with B=0 and B=35, respectively. Dotted lines
indicate the results for RND networks. In all cases m=5, and the reported values refer to an average over 10 realizations of networks with
N=1000 nodes. Random networks have �k�=2m, identical to that of SF networks.

FIG. 2. �N /�2 �in logarithmic scale� vs r with a weighted cou-
pling scheme given by �a� �=0 and �b� �=3. Same stipulations as in
the caption of Fig. 1.

FIG. 3. Values of �N /�2 �in logarithmic scale� vs r obtained at
each cooling step of the minimization procedure, for a weighted
coupling scheme given by �a� �=0 and �b� �=3. In both graphs the
curves with diamonds, crosses and down-pointing triangles refer to
SF networks with B=0, B=35, and RND networks, respectively.
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While our study focused on normalized coupling
schemes, results for the non-normalized case K=1 �not re-
ported here� show the following changes in the scenario: for
all the networks, the curves of �N /�2 have a pronounced
minimum at ��−1 whatever the value of r is. Furthermore,
RND networks provide better topologies for inducing a syn-
chronized behavior than SF networks, for all values of �.
Although the optimal conditions for synchronization can be
obtained for disassortative wirings, a further minimization of
parameter r also induce a strong destabilization of the syn-
chronous state.

Finally, we illustrate our arguments by examples of
different degree-correlated weighted networks of coupled
maps. The dynamics is ruled by Eq. �1�, with the local
dynamics given by the quadratic map f�x�=1−ax2 set at the
chaotic regime with a=1.99, and the coupling function
H�x�= f�x�. The appearance of the synchronous state can be

monitored by looking at the time average �over a window of
length L� of the parameter D=1− 1

L�t=1
L ��t�2, where ��t�2

=�i=1
N ��xt

i− x̄t�2 /�i=1
N �xt

i�2� �x̄t is the average amplitude at a
given step time t�. If all maps evolve independently, D�0.
In contrast, if their motions are fully synchronized then
D=1.

Figure 4 shows the behavior of D vs the coupling strength
� for SF and RND topologies, and for various values of r
and �. As expected, the observed synchronization scenario
reflects qualitatively the results of Fig. 2. Indeed, when the
SF networks are considered with �=0 �curves in Fig. 4�a��,
the conditions r�0 provide a better synchronization behav-
ior than the case r�0. Conversely, for �=3 �Fig. 4�b�� the
synchronization scenarios for SF wirings with r�0 is clearly
worse than topologies with r
0.

Synchronization properties of RND networks are indi-
cated by curves in Figs. 4�c� and 4�d�. These topologies are
clearly less sensitive to degree-degree correlations than those
of SF networks. The condition for �=0 �the ensemble of
curves in Fig. 4�c�� provides, however, a better synchroniza-
tion behavior than the case �=3 �curves in Fig. 4�d��.

Whereas for small �, the SF and RND topologies do not
show any appreciable qualitative difference, as the coupling
strength becomes larger, uncorrelated �r=0� SF topologies
provide larger values of D than RND wirings, independently
of the weighting coupling scheme. In contrast, for networks
with an assortative coefficient r�0, such differences are not
trivial and they depend on the parameter �.

In conclusion, we addressed the question of whether the
propensity for synchronization of networks is affected by
degree-degree correlations. The results show that the degree
distribution, the weighted coupling scheme and the degree-
degree correlations among the nodes compete in a nontrivial
way to determine optimal synchronous behavior in weighted
networks. In particular, we found that tuning the assortative
coefficient of a network towards its minimum value induces
a destabilization of the synchronous state.

Our approach may provide hints for the design of cou-
pling matrices that warrant the stability of synchronized state
in weighted networks. Results presented here may give in-
sights into the mechanisms of real degree-correlated net-
works �as metabolic or epidemiological networks�, that un-
derlie the transmission and synchronization of information.
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